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ELEMENTARY RESULTS FOR HIGH FREQUENCY SCATTERING BY CONES
by
J. E. Burke, L. Mower, and V. Twersky

Sylvania Electronic Defense Laboratories, Mountain View, California

ABSTRACT

Elementary high frequency results for scattering by finite cones are
obtained by approximating the surface fields in the integral representation
by their geometrical optics values. Both singly and doubly truncated cones
are considered. A general expression is obtained for the location of the
'""gpecular beam' (i.e., the surface generated by the geometrically reflected
rays), and simple results for the field on and off the '"beam'' are developed.
In particular, it is shown that for many practical purposes a universal curve
exists for the scattering pattern. This curve, which depends on a parameter
involving the cone's length and half angle, falls more or less between the
Fraunhofer "'aperture'' patterns for the strip and disk, and differs essentially
in that the minima are not zero. Numerical illustrations are given.

1. INTRODUCTION

The scattering of waves by finite con2s whose length and base dimen-
sions are large compared to wavelength ("high frequency scattering range'')
is of interest to various physical and engineering applications. In this range
we obtain elementary approximations from the surface integral representa-
tion of the scattered field (scalar or vector) by replacing the unknown surface

fields by their geometrical optics values, and then evaluating the integral.

The limitations of this type of approximation are well known; however,
such results, particularly in the vicinity of the "principal scattered lobe',
have been shown to be adequate for many practical applications. DBetter
approximations for the fields in other directions may be obtained by the
methods of Fock, Keller, Siegel, and otherslwho use essentially more com-

plete representations for the surface fields.



In the following, we begin with the general scalar problem of scatter-
ing by an arbitrary totally reflecting object, and specialize the result to far-
field scattering by the cone. We then treat the corresponding vector electro-
magnetic problem. The physical significance of the results are discussed,

and numerical illustrations are given,

It is to be stressed that the approximations in this report are based
on well known elementary procedures, and that some of the results are to
be found ellewherez.' 3However. our final results differ from those derived
by others on the basis of the same initial approximation (because of differ-
ing treatments of certain integrals that arise) and are more detailed than

those we presented previoully.3

2, SCALAR FIELDS
2.1. Scattering by an Arbitrary Object

The scalar scattering problem of a point source exciting an arbitrary
totally reflecting object may be formulated as follows: In the volume external

to the scatterer (whose surface is specified by S5 ), we require a solution of
(1) (VE+ &) P(@,L,) = 601-1,), VE= af+a;_+a; , k=cn/a,

subject to prescribed boundary conditions at the surface of the scatterer, (The

delta function indicates a source at T =7, . see Figure 1 for the scattering

geometry.) The solution is to be of the form

Y

6MR
(2) Y1, 0.) = Y,L)+u(L,L), ¥, =

ik, Re= 0ol

af)

~

where 1/: represents the incident field, and where the associated scattered

field fulfills

ik, Ry A
et |le 2
(3) u(ﬁ,ﬂ,) ~ [Tﬂ_f;-_][_f "J g(’; ’;-), as f;—b o0 and vy )

The "scattering amplitude" ;(f"f:) indicates the ''far-field" response
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Figure 1. Scattering geometry.



in the direction ;“ = ’L'/'" arising from plane wave excitation of direction - ﬁt.
(i.e., a source at ~1;—)£‘,00 ). The corresponding received power is given by

RGAc

P Sl AR - 2
@ "= tmR Ry 7=l

where Fi is the power of the source, (> is its gain, A is the area of the
receiving aperture, and ¢ is the normalized differential (''bistatic'') scatter-

ing cross section.

In general, we may represent & rigorously as an integral ove: the
scatterer's surface; thus

(5) ue,t) = §[Ge-t0)o, ¥ (cit,) - WML D0 r-c )]s,

s
where ﬁ(l[‘,-ﬁ'l) = ﬁ(R,) = -6“R'/4JIR,. is the free space scalar Green's func-

tion, and 7 is the outward normal to the surface. Consequently, were the

surface flelds ¥ and J,¥ known, then & (and f ) would follow on integration.

In the high frequency range we obtain approximations for « and 0¢ by
replacing the unknown surface fields in (5) by their geometrical optics values;
i.e., we use the surface fields which would exist on an infinite plane tangent
to the point in question. If the total field is to vanish at the scatterer, we in-
sert in (5) the boundary condition ¥= O, and the geometric value
” 0¥ = 28, W on Lt e

=0 on dark side
where the '"'lit" and ''dark''portions of the scatterer's surface are taken in the

sense of geometrical optics. Thus we obtain

M d = ajk,&a,, YdS = w_ ;
here, and in subsequent equations, the integration is restricted to the lit por-
tion of & unless specified otherwise. Similarly for vanishing normal deriva-

tive, we insert in (5) the boundary condition 3,: ¥=0. and the geometric value

J

(8) V=2V onifede

=0 ondark side ,



to obtain

(9) uw -2l%obus=u, -

Substituting the explicit forms of ,ff and ‘f," into (7) and (9) leads to
. “(Rf*kt) A ﬁ

10 “. ~ é.k_. € ne tg

wol i}~ 2\ (R

where we have neglected the higher powers of //R, and I/Rt }

The scattered fields (10) may be split into ''reflected' and ''shadow
forming" field components4; the '"reflected' field, &, , essentially governs
geometrical reflections, while the '"shadow forming' field, Uy, is most signi-
ficant near the forward direction (e. g., it interferes with the incident field near
the scatterer to produce the geometrical shadow). To obtain this alternate re-
presentation we initially use the decomposition (2) in (5), and note that the inte-
gral involving ¥ vanishes identically. Then, in the remaining integral, we
replace « and S, U by their values consistent with the boundary conditions,
and the approximations (6) and (8); thus we obtain

R(R,+R,)
Y-S BN
AR n-(R,2R.)dS

(10') Ug= £l + Uy, Uy ;;‘f,), S:.
where L and D denote respectively the lita and dark side of the scatterer,

As a consequence of Green's theorem, up of (10') is equivalent to an integral
over any surface which together with D encloses a volumefree of sources. In
particular U, may be expressed as an integral over L and combined with «,

to obtain (10).

The scattering aniplitudes associated with (10) are

-[ﬁ ‘.k(‘j_;‘)_s: - A'A _ A.A A=-A
(11) f*‘;ﬂff BpatS, =717, p=nv, V=-n o,
or, equivalently,
- _ k(_chpi () . _Bre,
U A A/ anjl_e 65“’9')45) A==z

D

The corresponding total scattering cross section may be obtained from the

forward amplitude scattering theorem:

5



(12) Q) = @Ig(ﬁﬁ)lzif?ﬁ "‘—:,gmgm,ﬁ)z ‘%&mﬁcw)dﬁoﬁa.o]ds;

thus, to the present approximation the total scattering cross section for either
boundary condition equals twice the scatterers projection on a plane perpendi-

cular to U (i.e., twice the area of the shadow).

2.2 Scattering by a Finite Cone

In this section we specialize (11) to treat singly and doubly truncated

cones.

Consider a finite right circular cone of half angle r‘, with slant height £
and base radius 2, whose vertex is at the origin of a rectangular coordinate
system, and whose axis coincides with the positive 3 axis;see Figure 2, The
remaining coordinate axes are chosen so that V lies in the x} plane, i.e.,

A

(13) =-RAME+ 5066, , O «n

Then the vectors in (12), expressed in the usual spherical coordinates, are

given explicitly by

A

A
T = XCOPENO+ 4 ARSI+ 3006,

A

(14) 7 = Aeosq senl +ibéﬂ¢?’bd!"+gw‘sﬁ)

A . ) .

n = ;Ew»scp'co/s r'+5'2bm47'co»s M-z sl 5

AI
where the above forms for 7 and ;z apply for a point on the convex part of
the cone; on the base, which we assume to be flat, ['= f’:sbne'(ims‘l’:r;bld‘?')-f[c“f;)
A A

and =3

In terms of

A= pmb +eosfrind, B=snPome. 0 =4AisB2
> ?
(15)

>

- - -4 ~ B8
P = cotl(eose,-tose), Cong = 5 > st = 5



Figure 2.

>

The geometry for scattering by a finite cone.



the contribution to (11) arising from integrating over a portion of the convex

surface of the cone is given by

A b aceel"
(16) NGRS A
an ?

(-

where

.¢£r Do IMeos (¥~ %)

F, = &.,, I

- kb, conl'cosd’-cone, munl’,

(17) B
g = s 6B eas(W'-F) - putacs O

The limits of integration £<P‘- , corresponding to the cone generators (the
""shadow boundaries'') along which D=0 , are defined by

(18) Cors P, =-Cot b tan .

Thus the convex surface is totally illuminated for O < & < M¢ ‘2 =n) ,
partially illuminated for "< g§<s-I",and "dark" for & >7- M4 =0).
When &, >7/2 the base of the cone is also "lit" and the resulting contribu-
tion to f 4 18 the amplitude for a circular disk:

_‘/ea-z cka P [27,(kaD)] [cose+ case, t(eoss-coss,)]
(19) B, (7v) = e [ ke D 2 5

see Silvers for a detailed analysis of the circular "aperture factor''. Combin-

ing (16) and (19) (and omitting the subscripts) we have

Q) 048 < A2
(20) g0y = { CEH + B, ) T/2<Q¢A-T"
B(1Y), A-r<@<m
or equivalently
(20" £ = O, DHo=gen-r)+ BIEOH(E<Q<m) = CH+BH, |

where the step function // is unity in the range indicated in its argument and

zero elsewhere.



In general, for arbitrary directions of incidence and observation, we
cannot evaluate exactly. However, when D = O, the factor F is indepen-
dent of 7’ and (16) is given by a product of elementary integrals. We shall con-
sider this special case first and then the general case. Subsequently we extend
our results to treat doubly truncated cones, and show how our results are related

to those obtained by geometrical optics procedures.

Special case, D =0 : From equation (15) it follows that D is zero when

A A A A, A

(21) r=u, r‘-_-/.l.a-xéma;-}caae,,
i.e., for observation in the forward direction (¥ = noe=g ),a.nd in the direction
correaponding to the reflection of J in the X? plane (¥=7, O =71~-g, 5 for
example, back scattering for axial incidence). The resulting values of F are
F = -2(6imBosl 6w s + & cose, bonl™)
- [ f 2
(22)

F, = -2(ombeasT b + 4 coed sml),

A A

where in F+, 6 =8 for =Y, and 8=n—-6, for ﬁ:,&

Thus in the forward direction the form (21') reduces to
AA 'éa& . .
(23) g(u,v) = f-z-i-{[_‘!; cos, + aotr'emeom«g]H,ﬂrlcase,leg
The total scattering cross sectionas given by (12) may be written in the form
A . . .
(290 Q)= m‘-{wtrbmeooms QH + (2% -6m24 )08 H +1 Ico&Qle_g.

The first term of (24) is the total scattering cross section for the isosceles
triangle defined by the shadow boundaries; the base and leg of this triangle

are Eaéh‘f. and 4c¢ée" respectively. The remaining terms together give
the total scattering cross section for the larger segment of the base cut by

the chord joining the shadow boundaries. In particular if € =0 (7T-T'<gex)
or if éf = T (0% 8 < F)) then X = 2r:a.‘3lcasq,l as for a disk of radius 2.
On the cther hand if ¥ = /2(6, =T/2), then @ =ra%cot " as for the tri-
angle of base 24 and height acofI™.



For the second case of (21) we obtain

9 : 2 . 2 lcﬁmq H s :
(25)5*(,« ) _ Gcos r;::f:a,bm‘f {gm;, F[«haasa. kmg - Ho S hM‘MMH‘,

where A= acot". The term in curly brackets is the back scattering amplitude
for nose on incidence on a cone of half angle " and height Acas é,, e.g., for

axial incidence on the present cone)Z

fan r'[ﬂ 2ikk z-e““}

(26) f*(-;,g) = 2R

In (25) and (26) the term which is not proportional to R is a base edge contri-
bution. (In general an edge field is proportional to | /AR , but in the present
case there is an additional factor of g since we are on the ''caustic'' of the
edge ﬁelda.) The term of order l/ R is a tip contribution. The term propor-
tional to £ corresponds to specular reflection by the base.

In the range G <7/2, we have A, =/ and /'L: O. The two cases corre-
sponding to £ACas€>O  are contained in (23). Thus in the Umit "> F(h>0),
(25) reduces to the required disk result:

. A [Micaée.
(27) fem g*_(;t,ﬁ) =-F — .
r>al2
Similarly for & ->]2‘/£) we obtain the forward scattered value for a triangular
plate:
ckaleot
28 G) = x) = -
(28) a-wr/a?* L) 3*_0& x) = T

At the other limit k/zcoeeo >>/, ©,<t/2 the base edge term dominates
and (25))and (26) are given approximately by

-cdmf' 2ckheos 8

ft(/":’j) 2ne 98 (Cotr'bl‘ﬂze»ét}rzfq:(?‘.me.),

(29) 2ikA
aaranle
RS e

These forms are included primarily to facilitate comparison with the results

of more rigorous procedures based essentially on better approximations than

10



geometrical optics for the surface field at the cone's edge. The reader is re-
ferred to Siegol'l6' 7 analysis of back scattering for nose-on-incidence based on
approximating the edge field in the integral representation by means of Sommerfeld's

solution for the infinite wedge, and to Keller'ss' ?

analysis which uses the asymp-
totic form of Sommerfeld's solution to obtain the appropriate diffraction coeffi-

cients for the ''edge rays', The leading term of Keller's result is given by8

A AR 4_n3a 2 4)1‘2 drr+2r 3an+2rn
(30) ‘Hr'?;('},?), =(M+r‘)‘ céc (-E_JTTB-F' Fl+ o 2me iy 3
3r+2"

which corresponds to incident rays single-diffracted by the cone's edge; compare

with the rough approximation obtained from (29):
31 L aag2 alram®
(31) ¥n l?*_( ;.,})l = > .

Keller also derives the doubly-diffracted edge rays (which are excited by the

singly-diffracted rays traveling across the ""back' of the cone), etc. Siegel
has prepared a detailed compilation of microwave measurements on back scat-
tering versus £2 and has shown that Keller's first two orders of diffracted rays

give results for the intensity maxima in accord with experiment.

General case: In general we approximate F of (17) for large k by the method

of stationary phase; this result is then substituted into (16) and the final integra-
tion performed to obtain C. Physically speaking, for a given direction of ohserva-
tion, the stationary phase procedure picks out the generator (or generators) of the
cone which contributes most significantly to the scattered field. The 7’ integra-
tion provides the appropriate weighted sum of the contributions from each point on

the generator.

The phase in (17) is stationary for those values of %’ satisfying

atl A . :
(32) 5%.)- (0-#) = risnTDoin(9- %) =0,
i.e., for K= cf” ﬁ+‘§. There are three possibilities corresponding to different
£O:
ranges of &, ne2<g<n-r nE>P 20
(33) r<g<n/e, > 200,

0<gs«T, S =1,

11



In the first range there is at most one stationary point; in the second, at least
one and possibly two; in the last range there are always two. Keeping the
two stationary points explicit the usual stationary phase procedure applied to
(17) gives

, -ikr'OsmTe i Iy
(34) F(f;k) = Ef—z'gm"- {@(@)e kr DM 4 +P(n.+¢ )eakf DAamnmr- :-g .

When the cone is totally illuminated the stationary phase procedure
need not be used. For this case ¢ =  and (17) may be evaluated exactly in
b

terms of Bessel functions:

Firk) = ’f{[@ (5)+ @(m+4)] L(kr Decnl’) +:[8¢4)- B.(m+9 3T (k1 Dain T} |
(35)

o<, T

When ARD >>/ we replace the Bessel functions by their asymptotic forms

(36) JO ~fFeosfe- 2E_Z) 455,
and obtain (34).

The stationary phase procedure cannot be applied when D is near
zero (i.e., for observation near the special directions considered previously).
For this range we expand the exponential factor of (17) in powers of D and
integrate term by term. For total illumination the required result follows

from (35) by using the origin forms of the Bessel functions:

(37) (t)——é)[ (i)nﬂ J t<</ .

In the following we discount thisrange of D and use (34).
Substituting (34) into (16) we write C in the form

(38) (D)= () mote"/"{ﬁﬂ?)l[ka.(?-o) ¢p(n+<F)I[ka(P+D>l}

Xt
I[x]= E_Sre"“dt- o {e"a Qf:'d* )

where the last integral in essentially the complex Fresnel integral.

12



The limiting forms of I[x] are

3 X2 ‘
(39) I[x]““l-f-th-—l—f--rm, X=> 0,
» .
40 ~(Ne .3 ImL 3 ik
“o) X~ (z X " gx A tyee tr, A7®,

The analytical behavior of C is determined primarily by the ]-integrals
(which vary much more rapidly with & and & than do their multipliers). The
graph of |I(2:()|"2 for a generator of length £ falls more or less between the
Fraunhofer patterns for the disk of diameter £ and the strip of width £. As
can be seen from Figure 3 the essentially different feature of the present ''pat-
tern factor' is that the minima are not zero. Near the principal maximum the
intensiiies for the disk, cone, and strip factors are respectively I-0-25)(2,
1-0.274X%, 1-0.358X°

When kﬂ.(P:t D)>>i we use the asymptotic form (40) in (38) and
obtain

-ikaD ika.D
oA kP T [BE™"  ipm+ge

Wy Ol ~- e [BRE TR

An alternate procedure for obtaining this result is to first carry out the r’

integration in (16). This leads to

4, ika [P-Deas(4-€)] ke [P-Decs (9- ¢ )]
‘64 1< - L& -
o7 |keinT P-Deoe(@ %] (Kocal( P-Deantd- 21

[}

ag’

Ln

For the present case (D #P) the first term of the expression dominates.

Dropping the second, and evaluating the first by the method of stationary phase
we again obtain (41).

The special directions for which P=D correspond to values of &

and & satisfying

(42)  Ném?g+ bin’D+Leo0%smBLmnE = cot (s &) -cose) 6,<6.

These are the directions of specular reflection, and their znvelope defines the
""specular beam'. Thus (41) applies off the specular beam . On the other

hand, for observation o or ''near'' the '"beam'", such that ga(P- D)<< /

13
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Figure 3. Comparison of |I(2x)| ¢ for the cone with the Fraunhofer pattern
factors for the strip (sinx/x)”~, and for the disk (2J (x)/x)2 ;
here the length of the cone's generator, the strip width, and the
disk's diameter are all equal.
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and ka(P+-D) >> |, we use the origin form (39) for the first integral in (38)
and the asymptotic form (40) for the second; in this range the second term is
negligible compared to the first (i.e., the ratio of the second to the first is
Proportional to |/RA << | ). Similarly, in the corresponding form of g= C+8,
we drop term B of (19) which is also of order 1/,€a. relative to the specular
beam. Thus for P = D =(42), the scattering amplitude and corresponding dif-

ferential scattering cross section reduce to

2 € ) =% (’é‘)f‘%;: émﬂl ese " [tanTeose, - cooe)] %
(43) ’

e -
e, - SEL [wsa-ete] i)

The forms of (43) hold on the specular beam defined in (42). On this
beam, the angle © satisfies the inequalities

2l'-g<e<2l+y, for 024 <l

P
(44) 6«0 2l'+5, for r'ée,srr—er')

Q< ©<2n-(2r+g) For n-2r<g<n-Tr,
The lower limits of & occur for & = It ; the upper limits occur for @ =0 in
the first two cases, and for «’= 7 in the third. The total range of variation
of © is 26, in the first range, 2" in the second, and 2(T-T"-6,) in the third.
Consequently the beam is nearly conical for small ranges of variation (in particu-
lar, for &

(-]

(43) is slowly varying. The extreme values of J(5)are

= O the beam is identically the cone of half angle 2" ), and ¢ of

aes) = nes tamléwm (I
(> = ) wn( t16,)
(45) o) =0, g>I
™maunt
sntéa

= 5 mr',sén(r'-eo), es<r .
When fi’gﬂ?U(ﬁ_) the value of & corresponding to half power is defined by
min

(46) Cos® = coss,~ dm(M+6) s

15



A crude, but simple, approximation for the differential scattering cross
section for a constant value of & ,and D not too greatly different from P) is

given by
(47) 0= o)|IkaP-D[* % = constant,

i.e., by the specular form 0(5S) ""modulated' by the pattern factor | I |a In
addition for some problems we can exploit the slow variation of & on the beam

and replace 0(s) by ((S). More generally, we use
max

(48) f("*‘;)‘@)’{%éimfﬁ(‘g)r[M(P-oﬂ, 908 = "’mf (45)’1[5 (P—D)]‘d

In particular, in the plane containing the direction of incidence and the cone's

axis, we have

(58 = 2 g o - kteosio T3] {S7©@T)
i: M) =% 3 ¢ 2r(sme, + Mé)I[kl w(@er)-kicos®-T] oo (6,+T)

(49)

. Jnmz‘ (4/D|I[kL cos @+ T - kfeas o-rIf {w‘(a -
* Bmb,+ Hind Sk (8, +

Because of the variation of the angular factor p‘/ D in O of (48), the
maximum of O for fixed 4 does not occur precisely in the specular direction
(e.g., for one of the special cases of (49) we have ﬁl/D = AMR(B'F)/(éhQ* 6&29))
wi..ch does not have its maximum in the specular direction & = 0;4-3)"). However,
for large values of £4 this displacement will be obscured by the more or less
"delta function like" behavior of |I|® around the specular value. Consequently,
for most applications, the specular value may be taken as the maximum for a

given 4.

In the above analysis, based on the condition P = D, we kept only the
first ] term of (38). Similarly, the second term of (38) would dominate
were Pz-D. However, the directions (8 4) for which P=-D correspond to
specular reflection from the internal surface, and (although of interest for re-

flection by a concave conical reflector) are not germane for our purposes.

Doubly truncated cone: The results for the finite cone can be extended imme-

diately to treat doubly truncated cones specified by two radii 2 and 4’ such

16



that 2'=64, 6</. Thus the amplitude corresponding to C of (16) is given by

euel ca'csel
(50) c _-,‘_é:Tmﬁ’ S _ S c‘é)f‘F(r;k)drls
(-3 (-]

i.e., by the difference of two cone results. Consequently, we simply replace
I[x] in our previous results by

(s1) Ifesl = {T0x1- % 1[sx] -4

1-8

In particular, corresponding to O of (48) we now have

(52) %@7;8,7 = mu o ”) G- SJ‘II[’“"(P‘D)] 621 [skaP-D)]|"

which reduces to

3/2
_ 8raf’ [cops,-cose / 6 )
(53) G = =5 | emar ]

on the specular beam P=D.

For small 6§ the present cross section 0% differs from the previous
by a term which is proportional to 6, for §=0, 0, reduces to 0 of (48).
Near the other limit x| (i.e., when MO and the doubly truncated
cone is approximately a circular cylinder), P is large and we use the asymp-

totic form (40) for the integrals in (52) to obtain the leading term
pr - e -ikLsnT(P-D)/2
(54) 0' _ ﬂal (.E) kLo [(P-D)/2 _g%e

2[kLemI(P-DY/2] , 6&=I
In the limit §-> l, (54) reduces to the cross section for a finite cylinder:

(55) ”'o(e"f;q’n} - #12L% (5in 2 Y (A5 }
CE IR W\ Z bnto(Acos®+ Boun)*

where £ is the length of the cylinder, and where

(56) Z= kL (case - o) .

In the specular direction (i.e., on the cone & =8, )} (55) reduces to

al’
(57) 05®,%;8.1) = L= pngeast .
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2.3, Elementary Considerations

It is of interest to compare the cylinder result (57) for < =0 with the

corresponding result for the singly~-truncated cone

0@,,0: atl g e
( 9,,0,9‘,,71') = (4’[) "E'JT >

(58) i) oen(8,+ 1)

92 cos”

£
0(2r+e,0,8,1) = wr(

We first rotate the cone through the angle [ as in Figure 4, to obtain a geo-
metry in which 90""" for the cone corresponds to &, for the cylinder, i.e.,
for either case we are concerned with the sine of the angle with the reflecting
generator. Thus the two expressions differ in that the cylinder result contains
4/2. while that for the cone contains (2/9)26¢c[". The cone contains 2 .4ec r
because the radius of curvature in the plane containing the surface normal at
some slant height £’ is not 4’ but A%6¢eT", In order to interpret the additional
factor #/9 (as well as the more complicated factor 4(/-53/‘2)2/(/-5)29 which
occurs in (53) for the doubly truncated cone) it is convenient to give an elemen-
tary derivation of (~ for the cone based more or less on the result 0; for the
cylinder. Thus if we start essentially with the ''geometrical optics scattering
amplitude' for reflection from a point on a cylindrical surface, i.e., with a
function proportional to Np (where @ is the radius of the curvature at the point),
and integrate O between O and 4, we obtain 2N&/3 . The corresponding value
of O is thus propo;'tional to J/-a./t? . We do this explicitly in the following.

According to geometrical optics, the reflection of a ray from a noint on
a perfectly reflecting surface, at which one radius of curvature is infinite, is

specified in general bylo
=l

2
] ! ] | o )

5 = cos i (—-+—— C’aéa*-ﬁ(-—‘-k—")bm .1
(59) o ‘/‘JTP 7= [Q Rt R,-) Rg- Rr 5
where e is the finite radius of curvature at the point of reflection, ¥ 1is the
angle with the surface tangent in the plane in which the radius of curvature is
infinite, & 1is the angle of incidence with the normal, and Rt and R,- are the

distances introduced previously. If the distances are large compared to e,

then (59) reduces to

18



Figure 4, Scattering at the specular angle.
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(60) 0 = 2npeos /(% v % Join®s, @<<R,,R,
t

This expression differs from g, of (57) by the factor

Vlow [
(61) C = -j-pm‘a’ -E;+-R-r) .

This "conversion factor' takes into account that (60) corresponds to a ''near-
field" cylindrical wave whereas (57) corresponds to a three-dimensional wave

form; see reference 10 for detailed discussion.

In order to take into account the fact that a detector may receive rays
from an extended portion of a surface having a variable radius of curvature,
we replace (59) by the square of the function obtained by integrating the scat-
tering amplitude over the appropriate range of e. (The amplitude f corre-
sponding to (59) is obtained by evaluating the '"near-field" form (10) by the
method of stationary phase.) If the impact point is at a distance £ from the
tip of the cone, then the corresponding value of Q is given by

(62) | o(%) = (%,o;cr);.

For the case of a distant source and a distant receiver, each point of the gene-
rator corresponds to a stationary point of the original surface integral, and we
must ""sum'’ the individual field contributions. Thus the resultant amplitude may

be written as
£
(63) ;=:é's°f'(g)dg)

where f(g) is proportional to the square root of (60) times a phase factor.
Since the phase factor and the angles ¥ and (X are constant along the gene-

rator, and since

ad¥  ade
L Y Y I

(64)
the integral in (62) is simply

aocel
(65) J 3 Ap de -§—;J aeel™

apecl

The corresponding scattering cross section is

20



4 S O z]
(66) 0 = (o) [emacosss [+ 7 Jin®) |
which differs from (60) only by the presence of the factor 4/(9(!06 r")) and.

from (’('s) of (43) only by the conversion factor (61).

Similarly, for the doubly truncated cone, such that the radii of curva-
ture of the extremities of the reflecting generator are equal to 44¢cl" and
Q'secT" with A’= 84, the above procedure yields

(67) 0= (90 ér)[amcaba//k-f sun? 8](, oy )

which includes the tipped cone result (66) (§ = 0) and the circular cylinder re-
sult (60) (5 =1),

3. ELECTROMAGNETIC FIELDS

The electromagnetic case may be treated by applying the procedures
of Section 2.1 to the vector analog of (5)11

(68) =-63[§;<(er' €)-T-eX(VKE)]-Ad5 |
where g is the total olectric field, and E is the scattered field,and &
is an arbitrary vector. The function r‘(r ) ..[];- (VV’/k‘)]b(lg-L'l) is the

P

free space dyadic Green's function; £ il the unit dyadic, and ¥/(Ir-¥’l) is
A

given after (5). For a dipole source at z‘t oriented in the direction b, say

with B’i = O, weuse
ch'f fl "

VV A osRY, ‘ﬁr_A A A
69 - P
(69) Eeeo = (- %) bmlr e AL

where the asymptotic form holds at large distances from the source. Then the
vector scattering amplitude corresponding to (68) is defined by

s‘r bﬁ" a
(o} E~ S ][ ]?‘n, [rem, roe;

in terms of oe the differential and total scattering cross sections are given by

A A
(71) 070y = #mlgFoN Q) %»ﬂmb} 50) .
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Paralleling the previous section we approximate the surface fields in
(68) by their geometrical values. For a perfect conductor we use the boundary

condition ;lxg = O, and the geometrical values
(12) (VXE)Xn = 2(VKE)XA  onltsiae, =0 on dark sik;

thus we obtair the approximation

(73) E ¢ = 2[[-eX(TXE,)-7ds.

The scattering amplitude associated with (73) is

(74) 4 = (L-#)-(bxD)Xf = $x(Dxby+ #7-(Dxb)x
where

(15) = Elaet O ys,

The analogous results for the magnetic field follow from (73) by using Maxwell's

equations; thus, for example, we obtain the scattering amplitude
(76) %= PXCEXT) = F-pif ~ 1§,

gm
where 7 is the direction of the incident magnetic field.

In view of the similarity of (75) and (11) approximations for £ follow
from our scalar results on replacing 5((595) by -ﬁ(cg), Thus corresponding to
A
(48) we obtain t = -[3(48)/5(@,)])1(‘?5) which leads to
f(#&)

4
(77) f {rx[mxn(ff)]} 6(‘:; R f {(uxb)xn(‘f) rr.(vxb>xn(‘P 5(‘%)

For observation in the plane defired by the direction of incidence and the cone's
axis, we replace ¢(#5) in (77) by (49).1f, in addition, n'%sai we obtain the
amplitudes and cross sections given in (78):

(78) j«m= }(6‘9);, T, = <T(‘f9) ; = _f H@(éch'#—daai"ﬁ) T = a;(:/q))
where t is the direction of the reflecting generator, and ﬁ@ = coo .
Similarly if b=;

(19) 2= £F)(pintE-aoeth), G, = C(49) fe = FHNE G = T (49).
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4. NUMERICAL ILLUSTRATIONS

In this section we illustrate the use of our results by applying them to
the cone with parameters T = 10, 5° and L= 89.18", for R = 142.2 (i.e.,
S-band, A = 3,937"). Initially we consider 0(S) of (43), the acattering cross

section on the specular beam; then we consider the more general case.

In order to apply (43) we first determine the specular beam by using
(42). Specializing (42) to the present value [ = 10, 5° for different values
of &, leads to the results shown in Figures 5 and 6; here we have plotted
the intersections of the beams with planes perpendicular to the cone's axis.
From these graphs we can determine &, and consequently obtain ¢osg - Cas e
which specifies the angular behavior of 0(S). Figures 7 and 8 show the varia-
tion of CosE, - CosES on the beams of Figures 5 and 6.

In the above example the cross section is seen to be slowly varying on
the specular beam. A measure of the variation of 0(S) (i.e., of the intensity
around the '"rim'" of the ""specular funnel") is given by the angular separation
of the half power directions as a function of &, and ". Solving (42) and (46)
simultaneously yields the results of Figures 9 and 10 which show that 0(S) is
slowly varying over relatively large ranges of 1" and & . (These graphical re-
sults can of course be used for specific applications; e.g., from Figures 9 and
10 the half power directions for (\",eo) = (25°, 70°) are found to be

©,9) = (94° £125%.)"

As another illustration we consider observation off the specular beam in
the plane defined by the direction of incidence and the cone's axis. In particular,
for @ = O (nose-on incidence) Figure 11 shows ¢, of (49), and 0(5)|I|®
of (47). Similarly, for & = O Figure 12 compares an auxilliary function

02 = nlg; ?_(2 with 0'(5)':['2, and Figure 13 gives the corresponding

*In practice, photo-optical techniques facilitate determining &(S) and ¢7Y5).
Thus one can illuminate a silvered cone with a distant point source of light and
record the specular beams on photographic paper or filin., If the paper is oriented
perpendicular to the cone's axis, then the recorded traces give directly the varia-
tion of O(5) (essentially as in Figures 5 and 6). Using positive transparencies
and controlled processing yields traces which can be measured on an optical
densitometer for direct determinations of ¢°(S).
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Figure 5. Traces of some specular beams on the plane 2 = 1
for " = 10.5° and 8,<m/2; the angular and radial

coordinates are respectively @ and tan® . The
shaded region corresponds to the cros~ section of
the scatterer.
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Figure 6. Traces of some specular beams on the plane z = -l

for ™ = 10.5° and 8,> w/2; the angular and radial
coordinates are respectively ¢ and tan® . The
shaded region corresponds to the cross section of
the scatterer.
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Figure 7. The variation of cos8, - cos® on the beams of

Figure 5; the angular and radial coordinates are

respectively « and cos8, - cos®.
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HALF POWER VALUE OF © ON SPECULAR BEAMS -- DEGREES
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Figure 9. Half power values cf & on specular beams as a
function of " and 6,
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Figure 11. 0;, and O (s)IIIZ,for 6, = 0 and % = 0; here
and on the following graphs, the dashed curve repre-
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function (= 7[\5_;*'5_ le These auxilliary functions are constructed from f+
and f_ of (49), or equivalently, by using either § or 5, in (48); the func-
tions O and q; differ from the ''reflected component'' and ''shadow forming
component'' introduced previously in that they are based on the approximate
forms (48) and (49) instead of (11'). The analogous sets of curves for & = 420,

and 7 - 42° are given in Figures 14 to 16, and 17 to 19, respectively,

The results for & = © illustrate a situation where the shadow forming
field has some effect near the specular direction; i.e., the present cone ( " = 10. 50)
is relatively narrow, and consequently the specular direction (& = 21°) occurs
relatively near the forward direction where 0, is a maximum. 'Thus the curves

O_‘; and O of Figure 11 which correspond to otthe interference pattern of 0y of
Figure 12 and 0; of Figure 13 are relatively different and their maxima are
shifted from that of 0. The maximum of g does not occur at the specular val-
ue (as does that of ¢°(S)II |2) because of the variation of the angular factor @ _

(which is neglected in ¢7¢(S)|T|2).

On the other hand for the non-axial cases, Figures 14, 15, 17, and 18
show that the shadow forming component is negligible in the vicinity of the spe-
cular direction (and is significant only near the forward direction). The max-
ima of O’(S)III‘Z 0., O ,and O, practically coincide at the specular angle, and
the curves differ negligibly over broad ranges of &. Thus we may use the simplest
function O (S)II (% as a good approximation for any of the other three (an approx-
imation that is even better for larger ' and/or k;’. than used for the figures).
Consequently the oscillatory function [T|2 1is the dominant factor of the scatter-
ing patterns. Thus, for many practical applications, IIIE may be regarded as

a "universal function" for the cone in the sense that (6 x/x)|° and IZJ‘ (X)/X |2

are used for the strip and disk,
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